Synthesis of Thiol-Terminated Poly(ε-caprolactone)[J].

AB - Segmented poly(urethane urea)s (SPUUs) based on aliphatic diisocyanato (2,6-diisocyanato methyl caproate (lysine-based diisocyanate, LDI)), poly(ε-caprolactone diol)s (PCLs) with molecular weights 530, 1250 and 2000, and 1,4-butanediamine were synthesized in absence of catalyst. The resulting SPUUs, with different soft segment length, were characterized by suitable analytical techniques. The synthesized SPUUs had high molecular weights, low glass-transition temperatures (≤-15°C) and high elongation-at-break. The degradation of SPUUs in alkaline solution and in vitro drug release of sulfamethoxazole in pH 7.4 buffer were investigated. In addition, the degradation behavior of PCL1250-based SPUU was investigated by exposing to a buffer solution and biochemical oxygen demand (BOD) tests in an activated sludge. The drug release data was analyzed by an empirical equation ((Mt/M∞)=ktn ). Finally, NIH3T3 fibroblasts have been used for cell-adhesion studies on these materials to investigate the biocompatibility. The synthesized SPUUs combine physical and bioresponsive and biodegradable properties that might be employed in wound dressing, drug delivery and tissue-engineering applications.

SYNTHESIS OF CYCLIC POLY( ε -CAPROLACTONE) BY …

Synthesis of Saccharide-Terminated Poly(ε-caprolactone) via Michael Addition and 'Click' Chemistry.

Synthesis of Thiol-Terminated Poly( ε -caprolactone)

A series of mixed, random cylindrical brush copolymers bearing polystyrene (PS) and poly(ε-caprolactone) (PCL) side chains were synthesized via the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). These novel cylindrical brush copolymers have been characterized by means of nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). It was found that the mikto-armed cylindrical brush copolymers were microphase-separated in bulks and that the morphologies were dependent on the mass ratios of PS to PCL side chains. One of the cylindrical brush copolymers was employed to incorporate into epoxy thermoset to investigate effect of the mikto-armed cylindrical brush architecture on the reaction-induced microphase separation behavior. Depending on the concentration of the cylindrical brush in epoxy, the thermosets can display the morphologies with the spherical, worm-like and lamellar PS microdomains dispersing in continuous thermosetting matrices.

Click Chemistry Publications - Scripps Research Institute

N2 - Segmented poly(urethane urea)s (SPUUs) based on aliphatic diisocyanato (2,6-diisocyanato methyl caproate (lysine-based diisocyanate, LDI)), poly(ε-caprolactone diol)s (PCLs) with molecular weights 530, 1250 and 2000, and 1,4-butanediamine were synthesized in absence of catalyst. The resulting SPUUs, with different soft segment length, were characterized by suitable analytical techniques. The synthesized SPUUs had high molecular weights, low glass-transition temperatures (≤-15°C) and high elongation-at-break. The degradation of SPUUs in alkaline solution and in vitro drug release of sulfamethoxazole in pH 7.4 buffer were investigated. In addition, the degradation behavior of PCL1250-based SPUU was investigated by exposing to a buffer solution and biochemical oxygen demand (BOD) tests in an activated sludge. The drug release data was analyzed by an empirical equation ((Mt/M∞)=ktn ). Finally, NIH3T3 fibroblasts have been used for cell-adhesion studies on these materials to investigate the biocompatibility. The synthesized SPUUs combine physical and bioresponsive and biodegradable properties that might be employed in wound dressing, drug delivery and tissue-engineering applications.

gamma-hexalactone, 695-06-7 - The Good Scents …

Segmented poly(urethane urea)s (SPUUs) based on aliphatic diisocyanato (2,6-diisocyanato methyl caproate (lysine-based diisocyanate, LDI)), poly(ε-caprolactone diol)s (PCLs) with molecular weights 530, 1250 and 2000, and 1,4-butanediamine were synthesized in absence of catalyst. The resulting SPUUs, with different soft segment length, were characterized by suitable analytical techniques. The synthesized SPUUs had high molecular weights, low glass-transition temperatures (≤-15°C) and high elongation-at-break. The degradation of SPUUs in alkaline solution and in vitro drug release of sulfamethoxazole in pH 7.4 buffer were investigated. In addition, the degradation behavior of PCL1250-based SPUU was investigated by exposing to a buffer solution and biochemical oxygen demand (BOD) tests in an activated sludge. The drug release data was analyzed by an empirical equation ((Mt/M∞)=ktn ). Finally, NIH3T3 fibroblasts have been used for cell-adhesion studies on these materials to investigate the biocompatibility. The synthesized SPUUs combine physical and bioresponsive and biodegradable properties that might be employed in wound dressing, drug delivery and tissue-engineering applications.

06/01/2018 · Fatimah Alshehrei

AB - The biodegradability and biocompatibility properties of ε-caprolactone homopolymers place it as a valuable raw material, particularly for controlled drug delivery and tissue engineering applications. However, the usefulness of such materials is limited by their low hydrophilicity and slow biodegradation rate. In order to improve polycaprolactone properties and functionalities, copolymerization of ε-caprolactone with δ-gluconolactone was investigated. Since enzymatic reactions involving sugars are usually hindered by the low solubility of these compounds in common organic solvents, finding the best reaction medium was a major objective of this research. The optimal copolymerization conditions were set up by using different organic media (solvent and solvents mixtures), as well as solvent free systems that are able to dissolve (completely or partially) sugars, and are nontoxic for enzymes. Native and immobilized lipases by different immobilization techniques from Candida antarctica B and Thermomyces lanuginosus have been used as biocatalyst at 80°C. Although the main copolymer amount was synthesized in DMSO:t-BuOH (20:80) medium, the highest polymerization degrees, up to 16 for the copolymer product, were achieved in solventless conditions. The products, cyclic and linear polyesters, have been characterized by FT-IR and MALDI-TOF MS analysis. The reaction product analysis revealed the formation of cyclic products that could be the major impediment of further increase of the chain length.

Journal of Applied & Environmental Microbiology

N2 - The biodegradability and biocompatibility properties of ε-caprolactone homopolymers place it as a valuable raw material, particularly for controlled drug delivery and tissue engineering applications. However, the usefulness of such materials is limited by their low hydrophilicity and slow biodegradation rate. In order to improve polycaprolactone properties and functionalities, copolymerization of ε-caprolactone with δ-gluconolactone was investigated. Since enzymatic reactions involving sugars are usually hindered by the low solubility of these compounds in common organic solvents, finding the best reaction medium was a major objective of this research. The optimal copolymerization conditions were set up by using different organic media (solvent and solvents mixtures), as well as solvent free systems that are able to dissolve (completely or partially) sugars, and are nontoxic for enzymes. Native and immobilized lipases by different immobilization techniques from Candida antarctica B and Thermomyces lanuginosus have been used as biocatalyst at 80°C. Although the main copolymer amount was synthesized in DMSO:t-BuOH (20:80) medium, the highest polymerization degrees, up to 16 for the copolymer product, were achieved in solventless conditions. The products, cyclic and linear polyesters, have been characterized by FT-IR and MALDI-TOF MS analysis. The reaction product analysis revealed the formation of cyclic products that could be the major impediment of further increase of the chain length.