of L-tyrosine to levodopa through the catecholamine synthesis ..

AB - Second messenger cAMP and cGMP represent a key step in the action of dopamine that modulates directly or indirectly their synthesis. We aimed to verify whether levodopa-induced dyskinesias are associated with changes of the time course of levodopa/dopamine stimulated cAMP and cGMP levels, and/or with changes of their catabolism by phosphodiesterase activity in rats with experimental hemiparkinsonism. Microdialysis and tissue homogenates of the striatal tissues demonstrated that extracellular and intracellular cAMP/cGMP levels were lower in dyskinetic animals during the increasing phase of dyskinesias compared to eukinetic animals, but cAMP/cGMP levels increased in dyskinetic animals during the phase of decreasing and extinction of dyskinesias. Dyskinesias and the abnormal lowering of striatal cGMP and cAMP after levodopa were prevented by pretreatment with the multipotent drug amantadine, outlining the inverse relationship of cAMP/cGMP to dyskinesias. Moreover, dyskinetic animals showed higher striatal hydrolyzing cGMP-phosphodiesterase but not hydrolyzing cAMP-phosphodiesterase activity, suggesting that low cGMP but not cAMP levels could be due to increased catabolism. However, expressions of isozyme phosphodiesterase-1B and -10A highly and specifically located in the basal ganglia were not changed after levodopa in dyskinetic and eukinetic animals: accordingly, selective inhibitors of phosphodiesterase-1B and -10A were ineffective on levodopa dyskinesias. Therefore, the isozyme(s) expressing higher cGMP-phosphodiesterase activity in the striatum of dyskinetic animal should be determined. These observations suggest that dopamine-mediated processes of synthesis and/or degradation of cAMP/cGMP could be acutely impaired in levodopa dyskinesias, opening new ways to understanding physiopathology and treatment.

Levodopa and Benserazide Drug Information, Professional

It may also compete with levodopa in the synthesis, transport, and uptake of dopamine in the CNS .

Parkinson's Glossary: The Michael J

The development of fluctuations reflects reduction of the LDR and endogenous dopamine synthesis caused by disease progression and, possible, levodopa treatment.

Levodopa and the Progression of Parkinson's Disease — …

Second messenger cAMP and cGMP represent a key step in the action of dopamine that modulates directly or indirectly their synthesis. We aimed to verify whether levodopa-induced dyskinesias are associated with changes of the time course of levodopa/dopamine stimulated cAMP and cGMP levels, and/or with changes of their catabolism by phosphodiesterase activity in rats with experimental hemiparkinsonism. Microdialysis and tissue homogenates of the striatal tissues demonstrated that extracellular and intracellular cAMP/cGMP levels were lower in dyskinetic animals during the increasing phase of dyskinesias compared to eukinetic animals, but cAMP/cGMP levels increased in dyskinetic animals during the phase of decreasing and extinction of dyskinesias. Dyskinesias and the abnormal lowering of striatal cGMP and cAMP after levodopa were prevented by pretreatment with the multipotent drug amantadine, outlining the inverse relationship of cAMP/cGMP to dyskinesias. Moreover, dyskinetic animals showed higher striatal hydrolyzing cGMP-phosphodiesterase but not hydrolyzing cAMP-phosphodiesterase activity, suggesting that low cGMP but not cAMP levels could be due to increased catabolism. However, expressions of isozyme phosphodiesterase-1B and -10A highly and specifically located in the basal ganglia were not changed after levodopa in dyskinetic and eukinetic animals: accordingly, selective inhibitors of phosphodiesterase-1B and -10A were ineffective on levodopa dyskinesias. Therefore, the isozyme(s) expressing higher cGMP-phosphodiesterase activity in the striatum of dyskinetic animal should be determined. These observations suggest that dopamine-mediated processes of synthesis and/or degradation of cAMP/cGMP could be acutely impaired in levodopa dyskinesias, opening new ways to understanding physiopathology and treatment.

Neurology Article: Levodopa Induces Synthesis of Nerve Growth Factor and Growth Hormone in Patients With Parkinson Disease
Includes Levodopa and Benserazide side effects, interactions and indications.

Levodopa and the Progression of Parkinson 's Disease - …

N2 - Second messenger cAMP and cGMP represent a key step in the action of dopamine that modulates directly or indirectly their synthesis. We aimed to verify whether levodopa-induced dyskinesias are associated with changes of the time course of levodopa/dopamine stimulated cAMP and cGMP levels, and/or with changes of their catabolism by phosphodiesterase activity in rats with experimental hemiparkinsonism. Microdialysis and tissue homogenates of the striatal tissues demonstrated that extracellular and intracellular cAMP/cGMP levels were lower in dyskinetic animals during the increasing phase of dyskinesias compared to eukinetic animals, but cAMP/cGMP levels increased in dyskinetic animals during the phase of decreasing and extinction of dyskinesias. Dyskinesias and the abnormal lowering of striatal cGMP and cAMP after levodopa were prevented by pretreatment with the multipotent drug amantadine, outlining the inverse relationship of cAMP/cGMP to dyskinesias. Moreover, dyskinetic animals showed higher striatal hydrolyzing cGMP-phosphodiesterase but not hydrolyzing cAMP-phosphodiesterase activity, suggesting that low cGMP but not cAMP levels could be due to increased catabolism. However, expressions of isozyme phosphodiesterase-1B and -10A highly and specifically located in the basal ganglia were not changed after levodopa in dyskinetic and eukinetic animals: accordingly, selective inhibitors of phosphodiesterase-1B and -10A were ineffective on levodopa dyskinesias. Therefore, the isozyme(s) expressing higher cGMP-phosphodiesterase activity in the striatum of dyskinetic animal should be determined. These observations suggest that dopamine-mediated processes of synthesis and/or degradation of cAMP/cGMP could be acutely impaired in levodopa dyskinesias, opening new ways to understanding physiopathology and treatment.

A class of drugs used to treat mild to moderate dementia in Parkinson's disease

Levodopa for the Treatment of Parkinson's Disease — …

Under normal condition the levodopa concentration of the plasma is low. This residual levels of levodopa probably reflects the peripheral conversion of L-tyrosine to levodopa through the catecholamine synthesis pathways. This pathway is tightly regulated by the rate limiting enzyme tyrosine hydroxylase. Tyrosine hydroxylase converts L-tyrosine to levodopa, and its rate limiting effect prevents large increases in plasma or brain concentrations of levodopa. However, broad beans supply levodopa directly, and this bypassess the rate limiting step thus increasing levodopa levels significantly. The discrepancy between the levodopa levels of the patients with Parkinson’s disease and the healthy subjects likely relates to the use of carbidopa in the former. This decarboxylase inhibitor prevent the conversion of levodopa to dopamine in the periphery, allowing more levodopa to enter the brain. This may have resulted in greater conversion of levodopa to dopamine in the healthy subjects, thus lowering levels of levodopa and raising levels of dopamine.

| Custom Synthesis, Isotope Labeled Internal Standards, Online Catalog: BDG Synthesis

and on brain serotonin synthesis.