To Investigate Conditions Essential for Photosynthesis

During that “,” , , and the rise of grazing and predation had eonic significance. While many critical events in life’s history were unique, one that is not is multicellularity, , and some prokaryotes have multicellular structures, some even with specialized organisms forming colonies. There are , but the primary advantage was size, which would become important in the coming eon of complex life. The rise of complex life might have happened faster than the billion years or so after the basic foundation was set (the complex cell, oxygenic photosynthesis), but geophysical and geochemical processes had their impacts. Perhaps most importantly, the oceans probably did not get oxygenated until just before complex life appeared, as they were sulfidic from 1.8 bya to 700 mya. Atmospheric oxygen is currently thought to have remained at only a few percent at most until about 850 mya, although there are recent arguments that it remained low until only about 420 mya, when large animals began to appear and animals began to colonize land. Just as the atmospheric oxygen content began to rise, then came the biggest ice age in Earth’s history, which probably played a major role in the rise of complex life.

identifies the conditions needed for photosynthesis

I think this because light is the most important thing needed for photosynthesis.

What Is the Importance of Chlorophyll for Photosynthesis?

The energy released by burning fuel or digesting food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (Boundary: The fact that plants capture energy from sunlight is introduced at this grade level, but details of photosynthesis are not.)

The all important processes of photosynthesis and respiration ..

In the earliest days of life on Earth, it had to solve the problems of how to reproduce, how to separate itself from its environment, how to acquire raw materials, and how to make the chemical reactions that it needed. But it was confined to those areas where it could take advantage of briefly available potential energy as . The earliest process of skimming energy from energy gradients to power life is called respiration. That earliest respiration is today called because there was virtually no free oxygen in the atmosphere or ocean in those early days. Respiration was life’s first energy cycle. A biological energy cycle begins by harvesting an energy gradient (usually by a proton crossing a membrane or, in photosynthesis, directly capturing photon energy), and the acquired energy powered chemical reactions. The cycle then proceeds in steps, and the reaction products of each step sequentially use a little more energy from the initial capture until the initial energy has been depleted and the cycle’s molecules are returned to their starting point and ready for a fresh influx of energy to repeat the cycle.

Photosynthesis need light to work, so light therefore should speed up the rate of photosynthesis.
I choose this topic because I wanted to see if light necessary for photosynthesis is really.

Both processes are essential for photosynthesis.

There is also evidence that life itself can contribute to mass extinctions. When the eventually , organisms that could not survive or thrive around oxygen (called ) . When anoxic conditions appeared, particularly when existed, the anaerobes could abound once again, and when thrived, usually arising from ocean sediments, they . Since the ocean floor had already become anoxic, the seafloor was already a dead zone, so little harm was done there. The hydrogen sulfide became lethal when it rose in the and killed off surface life and then wafted into the air and near shore. But the greatest harm to life may have been inflicted when hydrogen sulfide eventually , which could have been the final blow to an already stressed ecosphere. That may seem a fanciful scenario, but there is evidence for it. There is fossil evidence of during the Permian extinction, as well as photosynthesizing anaerobic bacteria ( and ), which could have only thrived in sulfide-rich anoxic surface waters. Peter Ward made this key evidence for his , and he has implicated hydrogen sulfide events in most major mass extinctions. An important aspect of Ward’s Medea hypothesis work is that about 1,000 PPM of carbon dioxide in the atmosphere, which might be reached in this century if we keep burning fossil fuels, may artificially induce Canfield Oceans and result in . Those are not wild-eyed doomsday speculations, but logical outcomes of current trends and , proposed by leading scientists. Hundreds of already exist on Earth, which are primarily manmade. Even if those events are “only” 10% likely to happen in the next century, that we are flirting with them at all should make us shudder, for a few reasons, one of which is the awesome damage that it would inflict on the biosphere, including humanity, and another is that it is entirely preventable with the use of technologies .

Photosynthesis is a process that is essential …

For this essay’s purposes, the most important ecological understanding is that the Sun provides all of earthly life’s energy, either (all except nuclear-powered electric lights driving photosynthesis in greenhouses, as that energy came from dead stars). Today’s hydrocarbon energy that powers our industrial world comes from captured sunlight. Exciting electrons with photon energy, then stripping off electrons and protons and using their electric potential to power biochemical reactions, is what makes Earth’s ecosystems possible. Too little energy, and reactions will not happen (such as ice ages, enzyme poisoning, the darkness of night, food shortages, and lack of key nutrients that support biological reactions), and too much (such as , ionizing radiation, temperatures too high for enzyme activity), and life is damaged or destroyed. The journey of life on Earth has primarily been about adapting to varying energy conditions and finding levels where life can survive. For the many hypotheses about those ancient events and what really happened, the answers are always primarily in energy terms, such as how it was obtained, how it was preserved, and how it was used. For life scientists, that is always the framework, and they devote themselves to discovering how the energy game was played.

Mono-cell Organisms - A Review of the Universe

Kirschvink noted that reappeared in the geological record during the possible Snowball Earth times, after vanishing about a billion years earlier. Kirschvink noted that iron cannot increase to levels where they would create BIFs if the global ocean was oxygenated. Kirschvink proposed that the sea ice not only killed the photosynthesizers, but it also separated the ocean from the atmosphere so that the global ocean became anoxic. Iron from volcanoes on the ocean floor would build up in solution during the , and during the greenhouse phase the oceans would become oxygenated and the iron would fall out in BIFs. Other geological evidence for the vacillating icehouse and greenhouse conditions was the formation of cap carbonates over the glacial till. It was a global phenomenon; wherever the Snowball Earth till was, cap carbonates were atop them. In geological circles, deposited during the past 100 million years are considered to be of tropical origin, so scientists think that the cap carbonates reflected a tropical environment. The fact of cap carbonates atop glacial till is one of the strongest pieces of evidence for the Snowball Earth hypothesis. Kirschvink finished his paper by noting that the eon of complex life came on the heels of the Snowball Earth, and scouring the oceans of life would have presented virgin oceans for the rapid spread of life in the greenhouse periods, and this could have initiated the evolutionary novelty that led to complex life.